首页> 外文会议>IEEE International Symposium on Computer-Based Medical Systems >Predicting Sepsis Biomarker Progression under Therapy
【24h】

Predicting Sepsis Biomarker Progression under Therapy

机译:预测治疗下脓毒症生物标志物的进程

获取原文

摘要

Sepsis is a serious, life-threatening condition that presents a growing problem in medicine and health-care. It is characterized by quick progression and high variability in the disease manifestation, so treatment should be personalized and tailored to fit individual characteristics of a particular subject. That requires close monitoring of the patients state and reliable predictions of how the targeted therapy will affect sepsis progression over time. We have characterized predictive capabilities of a graph-based structured regression approach under hemoadsorption therapy by using a computational model of sepsis biomarker progression in rats. Results suggests that an extension of the model representational power by using a dense graph and multiple-step predictors increases predictive accuracy, allowing more appropriate choice of treatment.
机译:败血症是一种严重的威胁生命的疾病,在医学和卫生保健中提出了越来越多的问题。它的特征在于疾病表现的快速发展和高度可变性,因此治疗应个性化并量身定制以适合特定受试者的个体特征。这需要密切监视患者的状态,并可靠地预测靶向治疗将如何随着时间影响败血症的进展。通过使用大鼠败血症生物标志物进展的计算模型,我们表征了在血液吸收疗法下基于图的结构回归方法的预测能力。结果表明,通过使用密集图和多步预测变量扩展模型表示能力可以提高预测准确性,从而可以更适当地选择治疗方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号