首页> 外文会议>IEEE International Parallel Distributed Processing Symposium >A Multi-partitioning Approach to Building Fast and Accurate Counting Bloom Filters
【24h】

A Multi-partitioning Approach to Building Fast and Accurate Counting Bloom Filters

机译:建立快速准确计数布隆滤波器的多分区方法

获取原文

摘要

Bloom filters are space-efficient data structures for fast set membership queries. Counting Bloom Filters (CBFs) extend Bloom filters by allowing insertions and deletions to support dynamic sets. The performance of CBFs is critical for various applications and systems. This paper presents a novel approach to building a fast and accurate data structure called Multiple-Partitioned Counting Bloom Filter (MPCBF) that addresses large-scale data processing challenges. MPCBF is based on two ideas: reducing the number of memory accesses from k (for k hash functions) in the standard CBF to only one memory access in the basic MPCBF-1 case, and a hierarchical structure to improve the false positive rate. We also generalize MPCBF-1 to MPCBF-g to accommodate up to g memory accesses. Our simulation and implementation in MapReduce show that MPCBF outperforms the standard CBF in terms of speed and accuracy. Compared to CBF, at the same memory consumption, MPCBF significantly reduces the false positive rate by an order of magnitude, with a reduction of processing overhead by up to 85.9%.
机译:布隆过滤器是节省空间的数据结构,用于快速设置成员资格查询。计数布隆过滤器(CBF)通过允许插入和删除来支持动态集来扩展布隆过滤器。 CBF的性能对于各种应用程序和系统至关重要。本文提出了一种新颖的方法来构建快速,准确的数据结构,称为多分区计数布隆过滤器(MPCBF),它可以解决大规模数据处理的挑战。 MPCBF基于以下两种思想:在标准MBFF-1情况下,将标准CBF中的内存访问次数从k(对于k个哈希函数)减少到仅一次内存访问,以及一种分层结构以提高误报率。我们还将MPCBF-1概括为MPCBF-g,以容纳多达g个存储器访问。我们在MapReduce中的仿真和实现表明,MPCBF在速度和准确性方面均优于标准CBF。与CBF相比,在相同的内存消耗下,MPCBF显着降低了误报率一个数量级,同时将处理开销减少了多达85.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号