首页> 外文会议>IEEE International Parallel Distributed Processing Symposium >Distributed Low-Latency Out-of-Order Event Processing for High Data Rate Sensor Streams
【24h】

Distributed Low-Latency Out-of-Order Event Processing for High Data Rate Sensor Streams

机译:高数据速率传感器流的分布式低延迟无序事件处理

获取原文

摘要

Event-based Systems (EBS) are used to detect and analyze meaningful events in surveillance, sports, finances and many other areas. With rising data and event rates and with correlations among these events, sequential event processing becomes infeasible and needs to be distributed. Existing approaches cannot deal with the ubiquity of out-of-order event arrival that is introduced by network delays when distributing EBS. Order-less event processing may result in a system failure. We present a low-latency approach based on K-slack that achieves ordered event processing on high data rate sensor and event streams without a-priori knowledge. Slack buffers are dynamically adjusted to fit the disorder in the streams without using local or global clocks. The middleware transparently reorders the event input streams so that events can still be aggregated and processed to a granularity that satisfies the demands of the application. On a Real time Locating System (RTLS) our system performs accurate low-latency event detection under the predominance of out-of-order vent arrival and with a close to linear performance scale-up when the system is distributed over several threads and machines.
机译:基于事件的系统(EBS)用于检测和分析监视,体育,财务和许多其他领域中的有意义的事件。随着数据和事件发生率的上升以及这些事件之间的相关性,顺序事件处理变得不可行,需要进行分配。现有方法无法解决分发EBS时网络延迟引起的无序事件到达的普遍性。无订单事件处理可能会导致系统故障。我们提出了一种基于K-slack的低延迟方法,该方法无需先验知识即可在高数据速率传感器和事件流上实现有序事件处理。动态调整松弛缓冲区,以适应流中的混乱情况,而无需使用本地或全局时钟。中间件透明地对事件输入流进行重新排序,以便事件仍可以聚合并处理为满足应用程序要求的粒度。在实时定位系统(RTLS)上,我们的系统在无序排气孔到达的情况下执行准确的低延迟事件检测,并且当系统分布在多个线程和机器上时,性能线性增长接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号