首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >Mapping discrete emotions into the dimensional space: An empirical approach
【24h】

Mapping discrete emotions into the dimensional space: An empirical approach

机译:将离散的情感映射到维度空间:一种经验方法

获取原文

摘要

A critical task in Affective Computing is the reliable assessment of emotional states. The two most prominent approaches to classify emotions are categorical concepts of discrete emotions (e.g. OCC) and dimensional models typically using the pleasure — arousal — dominance space (PAD). In current research and applications, however, there is little overlap between these two concepts. A mapping of discrete categories into the dimensional space would offer new possibilities to model the emotional states of users and artificial agents, though. We hence let N=70 healthy subjects place the labels of discrete OCC emotions into PAD space according to their subjective knowledge with a simple visual tool. There was a high inter-subject consistency regarding the positioning of OCC emotions for the dimension of pleasure. However, arousal and dominance ratings showed considerably greater variance. We conclude that global and reliable mappings of OCC emotions into the PAD space can best be provided for the pleasure dimension. The exact positioning of discrete emotions regarding arousal and dominance can only be gained by individual calibration of a given user in a strict within-subject approach.
机译:情感计算中的一项关键任务是对情绪状态的可靠评估。对情绪进行分类的两种最突出的方法是离散情绪的分类概念(例如OCC)和通常使用愉悦-唤醒-支配空间(PAD)的维度模型。但是,在当前的研究和应用中,这两个概念之间几乎没有重叠。不过,将离散类别映射到维空间将为建模用户和人工代理的情绪状态提供新的可能性。因此,我们让N = 70的健康受试者使用简单的视觉工具根据其主观知识将离散OCC情绪的标签放入PAD空间。 OCC情绪在愉悦方面的定位具有较高的受试者间一致性。然而,唤醒度和优势度等级显示出明显更大的差异。我们得出结论,对于愉悦维度,可以最好地提供OCC情感到PAD空间的全局和可靠映射。关于唤醒和支配性的离散情绪的精确定位只能通过使用严格的受试者内部方法对给定用户进行单独校准来获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号