首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >Improved link-based cluster ensembles for microarray data analysis
【24h】

Improved link-based cluster ensembles for microarray data analysis

机译:改进的基于链接的簇集成,用于微阵列数据分析

获取原文

摘要

Cancer has been identified as the leading cause of death. It is predicted that around 20–26 million people will be diagnosed with cancer by 2020. As a result, there is an urgent need for a more effective methodology to prevent and cure cancer. Microarray technology provides a useful basis of achieving this ultimate goal. For cancer research, it has become almost routine to create gene expression profiles, which can discriminate patients into good and poor prognosis groups. This cluster analysis offers a useful basis for individualized treatment of disease. Cluster ensembles have been shown to be better than any standard clustering algorithm for such a task. This meta-learning formalism helps users to overcome the dilemma of selecting an appropriate technique and the parameters for that technique, given a set of data. Among different state-of-the-art methods, the link-based approach (LCE) provides a highly accurate clustering. This paper presents the improvement of LCE with a new link-based similarity measure being developed and engaged. Additional information that is already available in an information network is included in the similarity assessment. As such, this refinement can increase the quality of the measures, hence the resulting cluster decision. The performance of this improved LCE is evaluated on published microarray datasets, in comparison with the original LCE and several well-known cluster ensemble techniques. The findings suggest that the new model can improve the accuracy of LCE and performs better than the others investigated in the empirical study.
机译:癌症已被确定为死亡的主要原因。预计到2020年,将有大约2026万人被诊断出患有癌症。结果,迫切需要一种更有效的方法来预防和治疗癌症。微阵列技术为实现这一最终目标提供了有用的基础。对于癌症研究而言,创建基因表达谱几乎已经成为一种常规方法,可以将患者区分为好的和不良的预后组。该聚类分析为疾病的个体化治疗提供了有用的基础。对于这种任务,聚类集成已被证明比任何标准聚类算法都要好。这种元学习形式主义可以帮助用户克服在选择一组给定数据的情况下选择合适技术和该技术参数的难题。在不同的最新方法中,基于链接的方法(LCE)提供了高度准确的聚类。本文提出了一种新的基于链接的相似性度量方法,该方法正在开发和采用中,从而提出了对LCE的改进。相似性评估中包含信息网络中已经可用的其他信息。这样,这种改进可以提高度量的质量,从而提高结果的集群决策。与原始LCE和几种众所周知的集群集成技术相比,已发布的微阵列数据集评估了这种改进的LCE的性能。研究结果表明,新模型可以提高LCE的准确性,并且比实证研究中的其他模型表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号