首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification
【24h】

Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification

机译:自适应多层广义学习矢量量化(AMGLVQ)作为融合特征提取和分类的心律失常心律分类新算法

获取原文

摘要

Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase.
机译:心电图(ECG)在监测和预防心脏病发作中起着重要作用。在本文中,我们提出了一种新的自适应多层广义学习矢量量化(AMGLVQ)方法,该方法集成了特征提取和分类功能,可以对ECG信号中的心跳进行自动分类。由于该任务具有特定的特征,例如,特征提取和分类的不一致优化,无法分类的节拍和强烈的类不平衡,因此在本研究中,我们提出了一种新的算法来处理这些问题。该算法将根据来自MIT心律不齐数据库的真实ECG信号进行评估。实验表明,与SVM或反向传播神经网络相比,该方法可以更好地提高分类的准确性,并且可以解决心跳分类的一些问题:不平衡类,特征提取与分类不一致以及在测试阶段检测未知心跳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号