首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >Rtop-k: A keyword proximity search method based on semantic and structural relaxation
【24h】

Rtop-k: A keyword proximity search method based on semantic and structural relaxation

机译:Rtop-k:一种基于语义和结构松弛的关键词相似度搜索方法

获取原文

摘要

Recently, keyword search has attracted a great deal of attention in an XML database. In many applications which backend data source powered by an XML database management system, keyword search because important to query XML data if the user does not know the structure or only knows the structure of XML partially. Given a keyword query, existing approaches first compute the lowest common ancestors (LCAs) or their variants of XML elements that contain the input keywords, and then identify the subtrees rooted at the LCAs as the answer. But this method doesn't satisfy the user's intention well enough. For users, information containing some keywords (not all keywords) may also be useful. In this paper, we solve this problem through applying relax structural queries during the XML keyword search procedure, and progressively to obtain the top-k answers of keyword proximity search though analyzing the semantic and structural information of the queries. We propose a transformation framework to derive the structural queries by analyzing the given keyword and the structural information of XML database. In addition, we propose a scoring method considering user's preference, and at last, we design an architecture (Rtop-k) to adaptively and efficiently identify the top-k relevant answers of a query. The performance of the technique as well as the recall and the precision were measured experimentally. These experiments indicate that our system is efficient enough and ranks quality results highly.
机译:最近,关键字搜索在XML数据库中引起了极大的关注。在许多由XML数据库管理系统提供支持的后端数据源的应用程序中,关键字搜索是很重要的,因为如果用户不了解XML的结构或仅部分了解XML的结构,这对于查询XML数据很重要。给定关键字查询,现有方法首先计算包含输入关键字的最低公共祖先(LCA)或其XML元素的变体,然后将以LCA为根的子树标识为答案。但是这种方法不能很好地满足用户的意图。对于用户而言,包含某些关键字(并非所有关键字)的信息也可能有用。在本文中,我们通过在XML关键字搜索过程中应用松弛结构查询来解决此问题,并通过分析查询的语义和结构信息来逐步获得关键字邻近搜索的前k个答案。我们提出了一个转换框架,通过分析给定的关键字和XML数据库的结构信息来导出结构查询。此外,我们提出了一种考虑用户偏好的评分方法,最后,我们设计了一种架构(Rtop-k),以自适应有效地识别查询的前k个相关答案。通过实验测量了该技术的性能以及召回率和精度。这些实验表明我们的系统足够有效,并且对质量结果进行了高度评价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号