首页> 外文会议>IEEE International Conference on System Analysis and Intelligent Computing >Human Action Recognition Using Fusion of Modern Deep Convolutional and Recurrent Neural Networks
【24h】

Human Action Recognition Using Fusion of Modern Deep Convolutional and Recurrent Neural Networks

机译:现代深度卷积与递归神经网络融合的人体动作识别

获取原文

摘要

This paper studies the application of modern deep convolutional and recurrent neural networks to video classification, specifically human action recognition. Multi-stream architecture, which uses the ideas of representation learning to extract embeddings of multimodal features, is proposed. It is based on 2D convolutional and recurrent neural networks, and the fusion model receives a video embedding as input. Thus, the classification is performed based on this compact representation of spatial, temporal and audio information. The proposed architecture achieves 93.1 % accuracy on UCF101, which is better than the results obtained with the models that have a similar architecture, and also produces representations which can be used by other models as features; anomaly detection using autoencoders is proposed as an example of this.
机译:本文研究了现代深度卷积和递归神经网络在视频分类中的应用,特别是人类动作识别。提出了一种多流体系结构,它利用表示学习的思想来提取多峰特征的嵌入。它基于2D卷积和递归神经网络,融合模型接收视频嵌入作为输入。因此,基于空间,时间和音频信息的这种紧凑表示来执行分类。所提出的体系结构在UCF101上达到了93.1%的精度,这比具有类似体系结构的模型所获得的结果要好,并且还产生了可以被其他模型用作特征的表示形式。举一个使用自动编码器的异常检测为例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号