首页> 外文会议>IEEE International Conference on Signal and Image Processing >An Adaptive Rate ECG Acquisition and Analysis for Efficient Diagnosis of the Cardiovascular Diseases
【24h】

An Adaptive Rate ECG Acquisition and Analysis for Efficient Diagnosis of the Cardiovascular Diseases

机译:自适应率心电图采集和分析,可有效诊断心血管疾病

获取原文

摘要

The aim of this paper is to develop an intelligent event-driven Electrocardiogram (ECG) processing module in order to achieve a computationally efficient solution for diagnosis of the cardiac diseases. The suggested method acquires the signal with an event-driven A/D converter(EDADC). The output of EDADC is passed through the activity selection and interpolation blocks. It allows focusing only on the important signal parts and resampling it uniformly by using the Simplified Linear Interpolator. Later on, the signal is de-noised. The autoregressive (AR) method is used to extract the classifiable features of the de-noised signal. Afterwards, the output is classified by employing different robust classification techniques such as support vector machines (SVMs), K- Nearest Neighbor (KNN) and Artificial Neural Network (ANN). The event-driven feature enables to adapt the system processing load according to the signal temporal variations. This interesting feature of the devised system aptitudes a drastic reduction in its processing activity and therefore in the power consumption as compared to the counter traditional ones. A comparison of the performance of different classifiers is also made in terms of accuracy. Results show that the proposed system is a potential candidate for an automatic diagnosis of the cardiac diseases.
机译:本文的目的是开发一种智能的事件驱动型心电图(ECG)处理模块,以实现对心脏病的诊断具有计算效率的解决方案。建议的方法通过事件驱动的A / D转换器(EDADC)来获取信号。 EDADC的输出通过活动选择和内插模块传递。它允许只关注重要的信号部分,并使用简化线性插值器对其进行均匀的重采样。稍后,信号被去噪。自回归(AR)方法用于提取降噪信号的可分类特征。之后,通过采用不同的鲁棒分类技术(例如支持向量机(SVM),K最近邻(KNN)和人工神经网络(ANN))对输出进行分类。事件驱动功能可以根据信号的时间变化来适应系统处理负载。与反传统系统相比,该设计系统的这一有趣特征可以显着减少其处理活动,从而降低功耗。还根据准确性对不同分类器的性能进行了比较。结果表明,所提出的系统是自动诊断心脏病的潜在候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号