首页> 外文会议>IEEE International Conference on Signal and Image Processing >Analysis of Depression Based on Facial Cues on A Captured Motion Picture
【24h】

Analysis of Depression Based on Facial Cues on A Captured Motion Picture

机译:基于面部提示的运动图像抑郁感分析

获取原文

摘要

Depression is one of the causes of suicide in the world next to other health issues that makes up an alarming point of mortality living in this lifetime. Melancholy that in the field of computer vision and signal processing has been tackled in various ways. Thus, this paper presents the classification model of detecting depression based on local binary pattern (LBP) texture features an image processing approach for pattern recognition on images. The study used the video recording from the SEMAINE database. The face image is cropped from a video and extracting Uniformed LBP features in every single frame. Part of the classification is to implement PCA eigenvalues from the original features to see the effects. The result of the accuracy was 81% of the SVM using RBF kernel classifier when detecting Depressed to Not Depressed Behavior on a captured motion picture.
机译:抑郁是世界上导致其他问题的自杀原因之一,这是一生中令人震惊的死亡数字。忧郁的是,在计算机视觉和信号处理领域已经以各种方式得到解决。因此,本文提出了一种基于局部二值图案(LBP)纹理的凹陷检测分类模型,该特征模型是一种用于图像识别的图像处理方法。该研究使用了SEMAINE数据库中的视频记录。从视频中裁剪出人脸图像,并在每帧中提取统一的LBP特征。分类的一部分是从原始特征中实现PCA特征值,以查看效果。使用RBF内核分类器在捕获的运动图像上检测到“沮丧至未沮丧行为”时,准确性的结果是SVM的81%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号