首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >Automatically and efficiently inferring the hierarchical structure of visual maps
【24h】

Automatically and efficiently inferring the hierarchical structure of visual maps

机译:自动高效地推断视觉地图的层次结构

获取原文

摘要

In Simultaneous Localisation and Mapping (SLAM), it is well known that probabilistic filtering approaches which aim to estimate the robot and map state sequentially suffer from poor computational scaling to large map sizes. Various authors have demonstrated that this problem can be mitigated by approximations which treat estimates of features in different parts of a map as conditionally independent, allowing them to be processed separately. When it comes to the choice of how to divide a large map into such ‘submaps’, straightforward heuristics may be sufficient in maps built using sensors such as laser range-finders with limited range, where a regular grid of submap boundaries performs well. With visual sensing, however, the ideal division of submaps is less clear, since a camera has potentially unlimited range and will often observe spatially distant parts of a scene simultaneously. In this paper we present an efficient and generic method for automatically determining a suitable submap division for SLAM maps, and apply this to visual maps built with a single agile camera. We use the mutual information between predicted measurements of features as an absolute measure of correlation, and cluster highly correlated features into groups. Via tree factorisation, we are able to determine not just a single level submap division but a powerful fully hierarchical correlation and clustering structure. Our analysis and experiments reveal particularly interesting structure in visual maps and give pointers to more efficient approximate visual SLAM algorithms.
机译:在同时定位和地图绘制(SLAM)中,众所周知,旨在顺序估计机器人和地图状态的概率滤波方法的计算缩放比例不足,无法适应大地图尺寸。各种各样的作者已经证明,可以通过近似处理来缓解此问题,该近似处理将地图不同部分中的要素估算视为有条件地独立,从而可以分别进行处理。关于如何将大型地图划分为此类“子地图”的选择,在使用传感器(例如有限范围的激光测距仪)构建的地图中,直观的启发法可能就足够了,其中规则的子地图边界网格效果良好。但是,在视觉感测下,子图的理想划分不太清晰,因为相机可能具有无限范围,并且通常会同时观察场景的空间遥远部分。在本文中,我们提出了一种有效且通用的方法,可以自动为SLAM地图确定合适的子地图划分,并将其应用于使用单个敏捷相机构建的可视地图。我们将特征的预测度量之间的相互信息用作相关性的绝对度量,并将高度相关的特征聚类为组。通过树分解,我们不仅可以确定单级子图划分,还可以确定功能强大的完全分层的相关性和聚类结构。我们的分析和实验揭示了视觉地图中特别有趣的结构,并为更有效的近似视觉SLAM算法提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号