首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >A visual odometry framework robust to motion blur
【24h】

A visual odometry framework robust to motion blur

机译:视觉里程表框架对运动模糊具有鲁棒性

获取原文

摘要

Motion blur is a severe problem in images grabbed by legged robots and, in particular, by small humanoid robots. Standard feature extraction and tracking approaches typically fail when applied to sequences of images strongly affected by motion blur. In this paper, we propose a new feature detection and tracking scheme that is robust even to non-uniform motion blur. Furthermore, we developed a framework for visual odometry based on features extracted out of and matched in monocular image sequences. To reliably extract and track the features, we estimate the point spread function (PSF) of the motion blur individually for image patches obtained via a clustering technique and only consider highly distinctive features during matching. We present experiments performed on standard datasets corrupted with motion blur and on images taken by a camera mounted on walking small humanoid robots to show the effectiveness of our approach. The experiments demonstrate that our technique is able to reliably extract and match features and that it is furthermore able to generate a correct visual odometry, even in presence of strong motion blur effects and without the aid of any inertial measurement sensor.
机译:运动模糊是有腿机器人(尤其是小型人形机器人)捕捉的图像中的一个严重问题。当将标准特征提取和跟踪方法应用于强烈受运动模糊影响的图像序列时,通常会失败。在本文中,我们提出了一种新的特征检测和跟踪方案,该方案即使对于非均匀运动模糊也很鲁棒。此外,我们开发了基于从单眼图像序列中提取并匹配的特征的视觉里程表框架。为了可靠地提取和跟踪特征,我们针对通过聚类技术获得的图像补丁分别估计了运动模糊的点扩展函数(PSF),并且在匹配过程中仅考虑了高度鲜明的特征。我们介绍了对因运动模糊而损坏的标准数据集以及安装在小型人形机器人上的摄像头拍摄的图像进行的实验,以证明我们方法的有效性。实验表明,我们的技术能够可靠地提取和匹配特征,并且即使在存在强烈的运动模糊效果且无需借助任何惯性测量传感器的情况下,也能够生成正确的视觉里程表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号