首页> 外文会议>IEEE International Conference on Plasma Science;International Conference on High-Power Particle Beams >Feedthrough of the Magneto-Rayleigh-Taylor instability in the presence of a shock
【24h】

Feedthrough of the Magneto-Rayleigh-Taylor instability in the presence of a shock

机译:存在冲击时磁-瑞利-泰勒不稳定性的馈通

获取原文

摘要

Summary form only given. The success of the Magnetized Liner Inertial Fusion (MagLIF) campaign requires successful mitigation of the Magneto-Rayleigh-Taylor instability (MRT). Initially, the exterior of the liner is MRT unstable; as the accelerated liner compresses a fill gas, it is eventually decelerated by the back pressure of the fill gas causing the inner surface to become MRT unstable. It is thought that feedthrough of MRT from the outer to inner surface can provide a seed for disruptive growth in the deceleration phase. A common method of studying MRT is by machining sinusoidal ripples on the exterior of metal targets (Al, Be in particular). This seeding provides a known wavelength for MRT whose growth can then be compared with linear theory. For the exterior of Al liners, linear MRT theory works quite well [1] and thus, feedthrough theory should apply equally well to the inner surface for an unshocked seeded liner. However, in most shots on the Z-machine a shock is driven through the liner. 2D HYDRA simulations show the shock is rippled with the seeded wavelength and imprints this ripple on the inner surface as it breaks-out. The amplitude of this ripple could be much larger than what would be expected from the feedthrough of MRT theory [2]. Thus, to study feedthrough directly either isentropic compression is required, or we must include the effect of the shock on feedthrough. We propose a simple model to determine the imprinted ripple amplitude from a shock and then calculate the evolution of the inner surface ripple using traditional MRT [2] and Richtmyer-Meshkov theory and then compare to 2D HYDRA results. This model allows for simultaneous study of outer/inner surface growth from an exterior seeded perturbation and includes the effect of feedthrough. We also examine the impact of axial magnetic fields and fill gases (cool and pre-heated) on feedthrough and shock imprinting by applying our model and compare with 2D simulations.
机译:仅提供摘要表格。磁化衬里惯性融合(MagLIF)运动的成功需要成功缓解磁瑞利泰勒不稳定性(MRT)。最初,班轮的外部是捷运不稳定的;当加速的衬里压缩填充气体时,它最终会因填充气体的背压而减速,从而导致内表面变得MRT不稳定。据认为,MRT从外表面到内表面的贯通可以为减速阶段的破坏性生长提供种子。研究MRT的一种常用方法是在金属靶材(特别是Al)的外部加工正弦波纹。这种接种为MRT提供了已知的波长,然后可以将其生长与线性理论进行比较。对于铝衬里的外部,线性MRT理论工作得很好[1],因此,馈通理论也应同样适用于未震荡的种子衬里的内表面。但是,在Z轴机器上的大多数射击中,都会通过衬套驱动震动。二维HYDRA模拟显示,冲击波随播种波长而波动,并在破裂时将其压印在内表面上。这种纹波的幅度可能比MRT理论[2]提出的预期要大得多。因此,要直接研究馈通,要么需要等熵压缩,要么我们必须包括冲击对馈通的影响。我们提出一个简单的模型来确定冲击波的印记波纹幅度,然后使用传统的MRT [2]和Richtmyer-Meshkov理论计算内表面波纹的演变,然后与二维HYDRA结果进行比较。该模型允许同时研究外部种子扰动引起的外/内表面生长,并包括馈通效应。我们还通过应用我们的模型并与2D模拟进行比较,研究了轴向磁场和填充气体(冷和预热)对馈通和冲击压印的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号