首页> 外文会议>IEEE International Conference on Knowledge Innovation and Invention >Stacked Convolutional Bidirectional LSTM Recurrent Neural Network for Bearing Anomaly Detection in Rotating Machinery Diagnostics
【24h】

Stacked Convolutional Bidirectional LSTM Recurrent Neural Network for Bearing Anomaly Detection in Rotating Machinery Diagnostics

机译:堆叠卷积双向LSTM递归神经网络在旋转机械诊断中的轴承异常检测

获取原文

摘要

This paper proposes a multi-layered anomaly detection scheme to train feature extraction and to test anomaly prediction by using Convolutional Neural Networks (CNNs) layer, Bidirectional and Unidirectional Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs), which is one of a novel deep architecture named stacked convolutional bidirectional LSTM network (SCB-LSTM). In the proposed model, the stacked CNNs perform feature extraction of vibration sensor signal patterns, and the result is used to feature learning with the stacked bidirectional LSTMs (SB-LSTMs). After this procedure, the stacked unidirectional LSTMs (SU-LSTMs) enhance the feature learning, and a regression layer finally predicts anomaly detections. The experimental results of bearing data not only show the accuracy of the proposed model in anomaly detection for rotating machinery diagnostics, but also suggest the better performance than other state-of-the-art algorithms such as a plain uni-LSTM or Bi-LSTM.
机译:本文提出了一种多层异常检测方案,通过使用卷积神经网络(CNN)层,双向和单向长期短期记忆(LSTM)递归神经网络(RNN)来训练特征提取和测试异常预测,该方法是一种称为堆叠卷积双向LSTM网络(SCB-LSTM)的新型深度架构的概念。在提出的模型中,堆叠的CNN执行振动传感器信号模式的特征提取,并将结果用于堆叠双向LSTM(SB-LSTM)的特征学习。在此过程之后,堆叠的单向LSTM(SU-LSTM)增强了特征学习,并且回归层最终预测了异常检测。轴承数据的实验结果不仅表明了所提出模型在旋转机械诊断异常检测中的准确性,而且还提出了比其他最新算法(例如普通uni-LSTM或Bi-LSTM)更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号