【24h】

Extracting top-k most influential nodes by activity analysis

机译:通过活动分析提取前k个最具影响力的节点

获取原文

摘要

Can we statistically compute social influence and understand quantitatively to what extent people are likely to be influenced by the opinion or the decision of their friends, friends of friends, or acquaintances? An in-depth understanding of such social influence and the diffusion process of such social influence will help us better address the question of to what extent the `word of mouth' effects will take hold on social networks. Most of the existing social influence models to define the influence diffusion are solely based on topological connectivity of social network nodes. In this paper, we presented an activity-base social influence model. Our experimental results show that activity-based social influence is more effective in understanding the viral marketing effects on social networks.
机译:我们能否通过统计方法计算社会影响力并定量地了解人们在多大程度上会受到朋友,朋友的朋友或熟人的观点或决定的影响?对此类社会影响力及其传播过程的深入了解将有助于我们更好地解决“口碑效应”在何种程度上影响社交网络的问题。现有的大多数定义影响力扩散的社会影响力模型仅基于社交网络节点的拓扑连接。在本文中,我们提出了一个基于活动的社会影响力模型。我们的实验结果表明,基于活动的社会影响力对于理解病毒式营销对社交网络的影响更为有效。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号