【24h】

Designing a two-level monitoring method to detect network abnormal behaviors

机译:设计用于监控网络异常行为的两级监控方法

获取原文

摘要

Monitoring network traffic behavior is very critical for securing computing infrastructures. In this paper, we focus on enhancing the way of detecting anomalous network traffic behaviors by proposing a new two-level detection method that consists of abnormality detection and exact attack type identification. The abnormality detection is performed with the rules generated by Classification and Regression Trees (CART). Then, Support Vector Machine (SVM) is applied to design a predictive model to identify exact attack types (among DoS, U2R, R2L, and Probes). Since feature extraction is an important step for designing an efficient predictive model, we used Higuchi fractal dimension and statistical measures (mean, median, and standard deviation) with an overlapping sliding window operation to extract features. Among the extracted features, only significant features are selected by applying statistical analysis and used to design a predictive model. As results, we found that our approach shows about 80.03% accuracy in detecting network abnormal behaviors. From a comparative study, we concluded that our proposed SVM-based predictive model is superior to a broadly known NN-based predictive model for identifying exact types of attacks.
机译:监视网络流量行为对于确保计算基础架构的安全至关重要。在本文中,我们通过提出一种由异常检测和精确攻击类型识别组成的新的两级检测方法,着重于增强检测网络流量异常行为的方法。使用分类树和回归树(CART)生成的规则执行异常检测。然后,应用支持向量机(SVM)设计预测模型,以识别确切的攻击类型(DoS,U2R,R2L和探针)。由于特征提取是设计有效的预测模型的重要步骤,因此我们使用Higuchi分形维数和统计量度(均值,中位数和标准差)以及重叠的滑动窗口操作来提取特征。在提取的特征中,通过应用统计分析仅选择重要特征,并将其用于设计预测模型。结果,我们发现我们的方法在检测网络异常行为方面显示出约80.03%的准确性。通过比较研究,我们得出结论,我们提出的基于SVM的预测模型优于用于识别攻击类型的广为人知的基于NN的预测模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号