【24h】

Advanced absolute orientation algorithm based on unit quaternion on alignment

机译:基于对齐单元四元数的高级绝对定位算法

获取原文

摘要

The main objective of this paper is to develop 3D point cloud alignment technique by using an improved absolute orientation algorithm based on unit quaternion. In this method, Scale Invariant Features Transform (SIFT) is used to find corresponding feature points, and Random Sample Consensus (RANSAC) is used as robust estimator to remove false matches in the point cloud group. The unit quaternion solution is employed for initial registration. After the initial registration of point clouds, this cannot meet the requirements of registration accuracy. Therefore, we need to achieve accurate registration on the basis of initial registration. The Iterative Closest Point (ICP) algorithm is one of the widely-used methods to cope with 3D registration. However, ICP is vulnerable to outliers and missing data, which severely compromises its performance. In this paper, Sparse L-norm based ICP algorithm is developed to achieve precise registration. Experimental results verified accuracy of the presented algorithm in point cloud registration.
机译:本文的主要目的是通过使用基于单元四元数的改进的绝对方向算法来开发3D点云对齐技术。在这种方法中,尺度不变特征变换(SIFT)用于查找相应的特征点,而随机样本共识(RANSAC)作为鲁棒估计器来消除点云组中的错误匹配。单元四元数溶液用于初始配准。初始注册点云后,这不能满足注册精度的要求。因此,我们需要在初始注册的基础上实现准确的注册。迭代最近点(ICP)算法是应付3D注册的一种广泛使用的方法。但是,ICP容易受到异常值和数据丢失的影响,从而严重影响其性能。本文提出了基于稀疏L范数的ICP算法来实现精确配准。实验结果证明了该算法在点云配准中的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号