首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Frequency-based local content adaptive filtering algorithm for automated photoreceptor cell density quantification
【24h】

Frequency-based local content adaptive filtering algorithm for automated photoreceptor cell density quantification

机译:基于频率的局部内容自适应滤波算法,用于自动感光细胞密度定量

获取原文

摘要

Photoreceptor cells in the human eye play a vital role in vision. Certain retinal diseases cause the photoreceptor cells to degenerate and may lead to vision loss. Quantification of photoreceptor cell density from adaptive optics (AO) retinal images can provide valuable information and aid in the screening, diagnosis, and follow-up of retinal diseases. In this paper we describe an image model using a windowed two-dimensional (2D) lattice of pulses representing the cells and characterize the frequency content as decaying frequency domain pulses on the reciprocal lattice. Based on this model we propose a novel method for detection of cone photoreceptor cells by analyzing the discrete-space Fourier transform (DSFT) of AO retinal images. This method uses a small-extent block-based 2D discrete Fourier transform (DFT) to determine cell frequency content in order to obtain parameters of an adaptive circularly symmetric band-pass filter that is applied to the image. The filter extracts the underlying cellular structure and removes high-frequency noise as well as very low frequency contamination manifested as slow variations in the image. Subsequent detection yields an automated cell count that compares well with actual and manual counts on test and retinal images and demonstrates the accuracy of the method.
机译:人眼中的感光细胞在视觉中起着至关重要的作用。某些视网膜疾病会导致感光细胞退化,并可能导致视力丧失。从自适应光学(AO)视网膜图像中量化感光细胞的密度可以提供有价值的信息,并有助于视网膜疾病的筛查,诊断和随访。在本文中,我们使用窗口二维(2D)表示单元格的脉冲晶格描述了图像模型,并将频率内容表征为互易晶格上的衰减频域脉冲。在此模型的基础上,我们通过分析AO视网膜图像的离散空间傅里叶变换(DSFT),提出了一种检测视锥细胞的新方法。该方法使用基于小范围的块的2D离散傅里叶变换(DFT)来确定小区频率内容,以获得用于图像的自适应圆对称带通滤波器的参数。滤镜提取底层的细胞结构并去除高频噪声以及非常低的频率污染,这些污染表现为图像的缓慢变化。随后的检测产生了自动的细胞计数,可以与测试和视网膜图像上的实际计数和手动计数相比较,并且证明了该方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号