首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Video reconstruction using compressed sensing measurements and 3d total variation regularization for bio-imaging applications
【24h】

Video reconstruction using compressed sensing measurements and 3d total variation regularization for bio-imaging applications

机译:使用压缩感测测量和3d总变化正则化进行视频重建以用于生物成像应用

获取原文

摘要

The theory of compressed sensing (CS) predicts that random (or pseudo-random) linear measurements together with non-linear reconstruction can be used to sample and recover structured signals in a compressive manner. Lots of previous results demonstrated the efficiency of CS in recovering 2D images acquired using dedicated CS devices (single-pixel camera, accelerated MRI, etc…). In this paper, we investigate how this framework can be extended to perform an efficient joint reconstruction of a sequence of time-correlated 2D images, using 3D total variation regularization. We also evaluate the performances of this framework on test sequences issued from the bio-imaging field.
机译:压缩感测(CS)的理论预测,可以使用随机(或伪随机)线性测量以及非线性重建来以压缩方式采样和恢复结构化信号。许多先前的结果证明了CS在恢复使用专用CS设备(单像素相机,加速MRI等)获得的2D图像方面的效率。在本文中,我们研究了如何扩展此框架以使用3D总变化正则化对与时间相关的2D图像序列进行有效的联合重建。我们还根据生物成像领域发布的测试序列评估了该框架的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号