首页> 外文会议>IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management >Density Functional Theory-based modeling and calculations of a polyamide molecular unit for studying forward-osmosis-dewatering of microalgae
【24h】

Density Functional Theory-based modeling and calculations of a polyamide molecular unit for studying forward-osmosis-dewatering of microalgae

机译:基于密度泛函理论的聚酰胺分子单元的建模和计算,用于研究微藻的正渗透脱水

获取原文

摘要

Both the preparation of a reliable all-atom model of a polyamide (PA) membrane and the determination of its electrostatic parameters are considered significant challenges in a proposal to study forward-osmosis-dewatering of microalgae using molecular dynamics (MD). Density functional theory (DFT)-based calculations can effectively calculate for optimized structure and electrostatic properties, thus, employed to model and characterize the PA membrane starting from its molecular unit. The performed structural optimization resulted to the most stable configuration of the PA unit with bond length values that showed strong stability in the molecule such as the amide bond length of 1.413 Å which was found to differ from that of a related study by ~3%. The calculated charge density distributions, electrostatic potential isosurface, and Mulliken charges on the PA unit provided potential binding sites and insights on the formation of amide bonds on the PA molecule. The non-amidebonded nitrogen atom of m-phenylene diamine (MPD) was found to be the most active site in the molecule due to its highest magnitude of negative charge (positive Coulomb potential), suggesting that amide bond-formation with a carbon atom of a trimesoyl chloride (TMC) monomer is most likely to occur during polymerization. The calculated charges in the amide group and the zero-net sum of these charges also agreed reasonably well with another study. The results are of vital importance in parameterizing the interaction potentials of PA for use in the MD simulations.
机译:在使用分子动力学(MD)研究微藻的正向渗透脱水的提案中,考虑到可靠的聚酰胺(PA)膜全原子模型的制备及其静电参数的确定都是重大挑战。基于密度泛函理论(DFT)的计算可以有效地计算出优化的结构和静电性能,因此,可以从其分子单元开始对PA膜进行建模和表征。进行的结构优化使PA单元的结构最稳定,其键长值在分子中表现出强大的稳定性,例如酰胺键长为1.413Å,与相关研究的差异为〜3 \% 。计算出的PA单元上的电荷密度分布,静电势等值面和Mulliken电荷提供了潜在的结合位点,并提供了关于PA分子上酰胺键形成的见解。发现间苯二胺(MPD)的非酰胺键氮原子是分子中最活跃的位点,这是因为其负电荷量最大(正库仑电势),这表明与碳原子的酰胺键形成为均苯三甲酰氯(TMC)单体最有可能在聚合过程中发生。酰胺基的计算电荷和这些电荷的零净和也与另一项研究相当吻合。结果对于参数化用于MD模拟的PA的相互作用势至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号