【24h】

Fault Diagnosis on a Wound Rotor Induction Generator Using Probabilistic Intelligence

机译:基于概率智能的绕线转子感应发电机故障诊断

获取原文

摘要

Wound rotor induction generators are commonly used for wind applications. Although this technology is mature and in widespread use, there has been relatively little research on online condition monitoring thereof towards improving overall reliability of the system in which it is applied. This paper presents a method for diagnosing incipient faults on a wound rotor induction generator. The proposed method uses a probabilistic intelligence technique Bayesian classification together with voltage signature analysis for the fault diagnosis which has yet to be presented for wound rotor induction generators. A model of a three-phase wound rotor induction generator is constructed using finite element modelling. The behaviour of the generator is investigated under healthy, stator fault and rotor fault conditions. The proposed method is then implemented and tested for the task of diagnosing these faults. Results indicate that the Nave Bayes classifier was successfully trained and yielded 94% test accuracy which indicates the potential suitability of the method in enhancing predictive maintenance for wound rotor induction generators.
机译:绕线转子感应发电机通常用于风力应用。尽管该技术已经成熟并且被广泛使用,但是关于其在线状态监视以提高其所应用系统的整体可靠性的研究相对较少。本文提出了一种用于诊断绕线式转子感应发电机早期故障的方法。所提出的方法使用概率智能技术贝叶斯分类以及电压特征分析来进行故障诊断,该技术尚未针对绕线转子感应发电机提出。使用有限元建模来构建三相绕线式转子感应发电机的模型。在健康,定子故障和转子故障条件下研究发电机的行为。然后,针对诊断这些故障的任务实施并测试了所提出的方法。结果表明,Nave Bayes分类器已成功训练,并获得94%的测试准确度,表明该方法在增强绕线转子感应发电机的预测性维护方面的潜在适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号