首页> 外文会议>IEEE International Conference on Environment and Electrical Engineering;IEEE Industrial and Commercial Power Systems Europe >Two-Level Forecast-Based Energy and Load Management for Grid-Connected Local Systems Using General Load and Storage Models
【24h】

Two-Level Forecast-Based Energy and Load Management for Grid-Connected Local Systems Using General Load and Storage Models

机译:使用通用负荷和存储模型的并网本地系统基于两级预测的能源和负荷管理

获取原文

摘要

The ongoing changes in power supply systems cause, besides all technical challenges, increasing costs for electrical energy. Households and small or medium-sized companies and farms with high energy demand are interested in decreasing their expenses by installing renewable generation devices, e.g. solar panels or wind turbines, together with energy storages. Flexible energy management systems (EMS) can optimize their operation in different kinds of systems. A two-level method is proposed that is able to determine cost-efficient operation strategies in 1-minute-steps in real-time, based on forecasts of power demand and renewable generation for systems including renewable energy generation, shiftable loads and storages. On the upper level, a combination of Simulated Annealing together with non-linear optimization is used to determine look-ahead schedules for shiftable loads and setpoints for storages' states of charge over a forecasting time horizon of 24 hours. On the lower level, on a fast timescale of 1-minute steps, controls of storages are determined based on the current system state by non-linear optimization. General load and storage models can be applied. A simulation based on measurement data shows that the approach successfully reduces the overall cost with low computation time.
机译:除了所有技术挑战之外,电源系统的不断变化还导致电能成本增加。能源需求高的家庭,中小型公司和农场有兴趣通过安装可再生能源发电设备来降低开支。太阳能电池板或风力涡轮机,以及储能装置。灵活的能源管理系统(EMS)可以优化其在各种系统中的运行。提出了一种两级方法,该方法能够基于对电力需求和可再生能源发电的预测,包括可再生能源发电,可移动负载和存储的系统,以1分钟为步长实时确定具有成本效益的运营策略。在较高级别上,将模拟退火与非线性优化相结合,用于确定在24小时的预测时间范围内可移动负载的超前计划和存储荷电状态的设定点。在较低级别上,以1分钟为步长的快速时间尺度,通过非线性优化基于当前系统状态确定存储控制。可以应用常规的加载和存储模型。基于测量数据的仿真表明,该方法以较低的计算时间成功降低了总体成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号