【24h】

Centrifugal Pump Cavitation Detection Using Machine Learning Algorithm Technique

机译:基于机器学习算法的离心泵空化检测

获取原文

摘要

Cavitation is one of the major disadvantages in pumping system, which enhance to form bubbles in the pipeline and it reduces the efficiency of the pump. So it should be identified and take the preventive measure. Machine Learning is a fast and computational method which can easily detect any faults in the pumping system. Still now lots of work has been done on a detection of fault in the pumping system, but mainly those work has done based on vibration details and variation of speed. The paper presents how by the help of machine learning algorithm by varying the speed and pressure cavitation can be identified. It is the comparative study between how the vibration and speed together affects the cavitation result and variation of speed and pressure affects the cavitation. Support Vector Machine is one of the classification methods in machine learning algorithm where it can be easily classified the cavitation problem. So this paper analyses how the method of SVM can more efficiently detect the cavitation problem with the centrifugal water pump.
机译:空化是泵系统中的主要缺点之一,其增加了在管道中形成气泡的可能性,并降低了泵的效率。因此,应予以识别并采取预防措施。机器学习是一种快速的计算方法,可以轻松地检测出泵系统中的任何故障。现在,仍在检测泵系统中的故障方面进行了大量工作,但主要是基于振动细节和速度变化来完成这些工作。本文介绍了如何借助机器学习算法通过改变速度和压力空化来识别。这是振动和速度如何共同影响空化结果与速度和压力变化如何影响空化之间的比较研究。支持向量机是机器学习算法中的一种分类方法,可以很容易地对空化问题进行分类。因此,本文分析了SVM方法如何更有效地检测离心水泵的气蚀问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号