首页> 外文会议>IEEE International Conference on Electronics, Electrical Engineering and Computing >Shadow Detection in High-Resolution Multispectral Satellite Imagery Using Generative Adversarial Networks
【24h】

Shadow Detection in High-Resolution Multispectral Satellite Imagery Using Generative Adversarial Networks

机译:生成对抗网络在高分辨率多光谱卫星图像中的阴影检测

获取原文

摘要

Detecting shadows in high-resolution satellite images is a challenging task due to the fact that shadows can easily be mistaken for low reflectance soil or water and that such images have limited spectral bands. In this work, we propose a semantic level shadow segmentation by using generative adversarial networks and created a dataset of pre-processed images for training, validation and test. In this way, we trained a generator network that produces shadow masks with condition on a satellite image patch and tries to fool a discriminator, which is trained to discern if a given mask comes from the ground truth or from the generator model. The results achieve an accuracy of 95.85% and a Kappa coefficient of 91.76%, which is superior to the compared methods.
机译:由于以下事实很容易被误认为是低反射率的土壤或水,并且这种图像的光谱带有限,因此在高分辨率卫星图像中检测阴影是一项艰巨的任务。在这项工作中,我们提出了使用生成对抗网络的语义级别阴影分割方法,并创建了用于训练,验证和测试的预处理图像数据集。通过这种方式,我们训练了一个生成器网络,该生成器会在卫星图像补丁上生成带有条件的阴影蒙版,并试图欺骗鉴别器,该鉴别器将被训练以识别给定的蒙版是否来自地面真相或来自生成器模型。结果达到了95.85%的准确度和91.76%的Kappa系数,优于所比较的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号