首页> 外文会议>IEEE International Conference on Computer Vision;ICCV 2009 >Kernel methods for weakly supervised mean shift clustering
【24h】

Kernel methods for weakly supervised mean shift clustering

机译:弱监督均值漂移聚类的核方法

获取原文

摘要

Mean shift clustering is a powerful unsupervised data analysis technique which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. The data association criteria is based on the underlying probability distribution of the data points which is defined in advance via the employed distance metric. In many problem domains, the initially designed distance metric fails to resolve the ambiguities in the clustering process. We present a novel semi-supervised kernel mean shift algorithm where the inherent structure of the data points is learned with a few user supplied constraints in addition to the original metric. The constraints we consider are the pairs of points that should be clustered together. The data points are implicitly mapped to a higher dimensional space induced by the kernel function where the constraints can be effectively enforced. The mode seeking is then performed on the embedded space and the approach preserves all the advantages of the original mean shift algorithm. Experiments on challenging synthetic and real data clearly demonstrate that significant improvements in clustering accuracy can be achieved by employing only a few constraints.
机译:均值漂移聚类是一种功能强大的无监督数据分析技术,不需要先验聚类的数量,也不会限制聚类的形状。数据关联标准基于数据点的潜在概率分布,该分布通过使用的距离度量预先定义。在许多问题域中,最初设计的距离度量无法解决聚类过程中的歧义。我们提出了一种新颖的半监督核均值漂移算法,该算法在学习数据点的固有结构时,除了原始指标外还具有一些用户提供的约束。我们考虑的约束是应该聚在一起的成对的点。数据点被隐式映射到由内核函数引起的更高维度的空间,在其中可以有效地执行约束。然后在嵌入式空间上执行模式搜索,该方法保留了原始均值漂移算法的所有优点。对具有挑战性的合成数据和真实数据进行的实验清楚地表明,仅采用一些约束条件就可以实现聚类精度的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号