首页> 外文会议>IEEE International Conference on Computer and Communication Systems >A Machine Learning Algorithm TsF K-NN Based on Automated Data Classification for Securing Mobile Cloud Computing Model
【24h】

A Machine Learning Algorithm TsF K-NN Based on Automated Data Classification for Securing Mobile Cloud Computing Model

机译:基于自动数据分类的机器学习算法TsF K-NN保护移动云计算模型

获取原文

摘要

Mobile cloud computing (MCC) is fastest growing technology era in which the research society has recently embarked. Today, Mobile data can include financial transactions such as electronic payments, M-wallets and sensitive multimedia contents. The explosive volumes of mobile devices personal data, bring-up more attention to securely data storage rather than consideration on data privacy and confidentiality levels. In this scenario Machine Leaning (ML) brings an important role in the electronic data management. It is always expensive and hard to manage the data manually without adopting machine learning techniques using metadata. Many Machine Learning algorithms have been proposed to comprehend diverse data management issues, yet the forecast of the top secret data and public data in a document is as yet a challenging exploration task. The contribution of this research article is to demonstrate a securing mobile data storage secrecy and privacy in cloud communication framework in terms of automatic data classification using mobile training datasets with help of Training dataset Filtration Key Nearest Neighbor (TsF-KNN) classifier which classifies the data based on the confidentiality level of the record with higher accuracy and powerful timelines as compared to the traditional K-NN algorithms and securing such confidential data category afterwards by applying various existing cryptographic solutions to assuring data privacy and confidentiality levels and simulation results demonstrates that reducing the overall cost and minimize procedural time, increasing system performance and sustainability.
机译:移动云计算(MCC)是研究协会最近进入其中的发展最快的技术时代。如今,移动数据可以包括金融交易,例如电子支付,M钱包和敏感的多媒体内容。移动设备个人数据的爆炸性增长引起人们对安全数据存储的更多关注,而不是考虑数据隐私和机密性级别。在这种情况下,机器学习(ML)在电子数据管理中发挥了重要作用。在不采用使用元数据的机器学习技术的情况下,手动管理数据总是很昂贵且很困难。已经提出了许多机器学习算法来理解各种数据管理问题,但是对文档中的最高机密数据和公共数据的预测仍然是一项艰巨的探索任务。这篇研究文章的贡献在于,通过使用训练数据集过滤关键最近邻(TsF-KNN)分类器对移动数据集进行自动数据分类,展示了云通信框架中移动数据存储的保密性和隐私性,以对数据进行分类与传统的K-NN算法相比,基于记录的机密性级别具有更高的准确性和更强大的时间表,并且随后通过应用各种现有的加密解决方案来确保数据隐私性和机密性级别,从而保护了此类机密数据类别,仿真结果表明,降低了机密性总体成本并最大程度地减少程序时间,从而提高系统性能和可持续性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号