首页> 外文会议>IEEE International Conference on Computer and Communication Systems >Probability Mapping Based Artifact Detection and Wavelet Denoising based Artifact Removal from Scalp EEG for BCI Applications
【24h】

Probability Mapping Based Artifact Detection and Wavelet Denoising based Artifact Removal from Scalp EEG for BCI Applications

机译:针对BCI应用的基于概率图的伪像检测和基于小波去噪的头皮EEG消除

获取原文

摘要

In EEG-based Brain-Computer Interface (BCI) applications, the EEG recording is often contaminated by different types of artifacts that can misinterpret the BCI output. Automatic detection and removal of such offending artifacts from EEG for online processing pose a great challenge. In this paper, we present a novel method that can map the artifact probability of an EEG epoch based on four statistical measures: entropy, kurtosis, skewness and Periodic Waveform Index PWI). Then a removal method is adopted based on stationary wavelet transform that can be applied to the epochs by setting a particular probability threshold from the user. This epoch by epoch preprocessing would allow the user to tune the threshold parameters after some initial training with the same EEG recordings and eventually can be applied to both offline and online processing. Experimental results with both simulated and real EEG data prove the efficacy of the method that it can reliably trace the artifactual epoch with reasonable accuracy and eventually reduces the artifacts from EEG with very little distortion to the signal of interest. Further testing with EEG datasets for BCI experiments also shows that artifact removal can significantly enhance the BCI performance in both motor-imagery (MI) and event related potential (ERP) based BCI applications.
机译:在基于EEG的脑机接口(BCI)应用程序中,EEG记录经常被不同类型的伪影所污染,这些伪影可能会误解BCI输出。从EEG中自动检测和删除此类有问题的工件以进行在线处理提出了巨大的挑战。在本文中,我们提出了一种新颖的方法,可以基于四种统计量度(EET,峰度,偏度和周期波形指数PWI)来映射EEG时期的伪影概率。然后,采用基于平稳小波变换的去除方法,该方法可以通过设置用户的特定概率阈值将其应用于历元。逐个阶段的预处理将允许用户在使用相同的EEG记录进行一些初始训练后调整阈值参数,最终可以应用于脱机和联机处理。模拟和真实EEG数据的实验结果证明了该方法的有效性,它可以以合理的准确度可靠地跟踪人为时期,并最终以极少的失真减少了来自EEG的人为信号到目标信号的影响。针对BCI实验使用EEG数据集进行的进一步测试还表明,去除伪影可以显着提高基于运动图像(MI)和事件相关电位(ERP)的BCI应用中的BCI性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号