首页> 外文会议>IEEE International Conference on Cognitive Machine Intelligence >Towards Generating Consumer Labels for Machine Learning Models
【24h】

Towards Generating Consumer Labels for Machine Learning Models

机译:致力于为机器学习模型生成消费者标签

获取原文

摘要

Machine learning (ML) based decision making is becoming commonplace. For persons affected by ML-based decisions, a certain level of transparency regarding the properties of the underlying ML model can be fundamental. In this vision paper, we propose to issue consumer labels for trained and published ML models. These labels primarily target machine learning lay persons, such as the operators of an ML system, the executors of decisions, and the decision subjects themselves. Provided that consumer labels comprehensively capture the characteristics of the trained ML model, consumers are enabled to recognize when human intelligence should supersede artificial intelligence. In the long run, we envision a service that generates these consumer labels (semi-)automatically. In this paper, we survey the requirements that an ML system should meet, and correspondingly, the properties that an ML consumer label could capture. We further discuss the feasibility of operationalizing and benchmarking these requirements in the automated generation of ML consumer labels.
机译:基于机器学习(ML)的决策变得司空见惯。对于受基于ML的决策影响的人员而言,有关基础ML模型属性的一定程度的透明度可能是基础。在此愿景文件中,我们建议为经过培训和发布的机器学习模型发布消费者标签。这些标签主要针对机器学习领域的人员,例如ML系统的操作员,决策的执行者和决策主体本身。假设消费者标签能够全面捕获经过训练的ML模型的特征,那么消费者就可以识别何时应该取代人工智能。从长远来看,我们设想一种服务可以自动(半)生成这些消费者标签。在本文中,我们调查了ML系统应满足的要求,并相应地调查了ML消费者标签可以捕获的属性。我们将进一步讨论在ML消费标签的自动生成中实现这些要求并进行基准测试的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号