首页> 外文会议>IEEE International conference on cloud computing >HaSTE: Hadoop YARN Scheduling Based on Task-Dependency and Resource-Demand
【24h】

HaSTE: Hadoop YARN Scheduling Based on Task-Dependency and Resource-Demand

机译:HaSTE:基于任务依赖和资源需求的Hadoop YARN调度

获取原文

摘要

The MapReduce framework has become the de facto scheme for scalable semi-structured and un-structured data processing in recent years. The Hadoop ecosystem has evolved into its second generation, Hadoop YARN, which adopts fine-grained resource management schemes for job scheduling. One of the primary performance concerns in YARN is how to minimize the total completion length, i.e., makespan, of a set of MapReduce jobs. However, the precedence constraint or fairness constraint in current widely used scheduling policies in YARN, such as FIFO and Fair, can both lead to inefficient resource allocation in the Hadoop YARN cluster. They also omit the dependency between tasks which is crucial for the efficiency of resource utilization. We thus propose a new YARN scheduler, named HaSTE, which can effectively reduce the makespan of MapReduce jobs in YARN by leveraging the information of requested resources, resource capacities, and dependency between tasks. We implemented HaSTE as a pluggable scheduler in the most recent version of Hadoop YARN, and evaluated it with classic MapReduce benchmarks. The experimental results demonstrate that our YARN scheduler effectively reduces the makespans and improves resource utilization compare to the current scheduling policies.
机译:近年来,MapReduce框架已成为可扩展的半结构化和非结构化数据处理的实际方案。 Hadoop生态系统已经发展到第二代Hadoop YARN,它采用细粒度的资源管理方案进行作业调度。 YARN中主要的性能问题之一是如何最大程度地缩短一组MapReduce作业的总完成长度(即制造期)。但是,当前在YARN中广泛使用的调度策略(例如FIFO和Fair)中的优先约束或公平约束都可能导致Hadoop YARN集群中的资源分配效率低下。他们还忽略了任务之间的依赖关系,这对于资源利用的效率至关重要。因此,我们提出了一个名为HaSTE的新YARN调度程序,该调度程序可通过利用请求的资源,资源容量以及任务之间的依存关系的信息,有效地减少YARN中MapReduce作业的有效期。我们在最新版本的Hadoop YARN中将HaSTE实施为可插拔调度程序,并使用经典的MapReduce基准对其进行了评估。实验结果表明,与当前的调度策略相比,我们的YARN调度程序有效地减少了制造周期并提高了资源利用率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号