首页> 外文会议>IEEE International conference on cloud computing >Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes
【24h】

Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes

机译:用于工业过程的云原生监视的时间序列数据库的可伸缩性和鲁棒性

获取原文

摘要

Today's industrial control systems store large amounts of monitored sensor data in order to optimize industrial processes. In the last decades, architects have designed such systems mainly under the assumption that they operate in closed, plant-side IT infrastructures without horizontal scalability. Cloud technologies could be used in this context to save local IT costs and enable higher scalability, but their maturity for industrial applications with high requirements for responsiveness and robustness is not yet well understood. We propose a conceptual architecture as a basis to designing cloud-native monitoring systems. As a first step we benchmarked three open source time-series databases (OpenTSDB, KairosDB and Databus) on cloud infrastructures with up to 36 nodes with workloads from realistic industrial applications. We found that at least KairosDB fulfills our initial hypotheses concerning scalability and reliability.
机译:当今的工业控制系统存储大量受监视的传感器数据,以优化工业过程。在过去的几十年中,架构师主要是在这样的假设下设计此类系统的:它们在封闭的工厂侧IT基础架构中运行,而没有水平可伸缩性。在这种情况下,可以使用云技术来节省本地IT成本并实现更高的可扩展性,但是对于对响应性和鲁棒性有很高要求的工业应用,它们的成熟度还没有得到很好的理解。我们提出了一种概念性架构,作为设计云原生监控系统的基础。第一步,我们在云基础架构上对三个开源时间序列数据库(OpenTSDB,KairosDB和Databus)进行基准测试,该数据库具有多达36个节点,并具有来自实际工业应用的工作负载。我们发现至少KairosDB可以满足我们有关可伸缩性和可靠性的最初假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号