首页> 外文会议>IEEE International Conference on Bioinformatics and Computational Biology >A Head Pose Estimation Method Based on Multi-feature Fusion
【24h】

A Head Pose Estimation Method Based on Multi-feature Fusion

机译:基于多特征融合的头部姿态估计方法

获取原文

摘要

Since head pose estimation is influenced by illumination variation, expression, noise disturbance and other factors, which results in low rate of recognition, a method of head pose estimation based on multi-feature fusion is proposed in this paper. At first, a pose feature combining the second-order histogram of oriented gradient (HOG) and the uniform pattern of local binary pattern (UP-LBP) is proposed, which is used for head pose estimation in single image. Then, an improved random forest algorithm is adopted for classification of head pose and solving the instability problem of the algorithm. Finally, the improved random forest classifier is used for head pose estimation of the novel pose feature. The experimental results show that, the method proposed in this paper is more capable of classification and with better robustness to illumination variation.
机译:由于头部姿态估计受光照变化,表情,噪声干扰等因素的影响,导致识别率较低,因此提出了一种基于多特征融合的头部姿态估计方法。首先,提出了一种结合了定向梯度二阶直方图(HOG)和局部二值模式的均匀模式(UP-LBP)的姿态特征,将其用于单幅图像的头部姿态估计。然后,采用改进的随机森林算法对头部姿势进行分类,解决了算法的不稳定性问题。最后,将改进的随机森林分类器用于新颖姿势特征的头部姿势估计。实验结果表明,本文提出的方法分类能力强,对光照变化具有较强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号