首页> 外文会议>IEEE International Conference on Bioinformatics and Computational Biology >Exploring the Relationship between Neural Mechanism and Detection in Mental Fatigue by Genetic Algorithm and Hierarchical Clustering
【24h】

Exploring the Relationship between Neural Mechanism and Detection in Mental Fatigue by Genetic Algorithm and Hierarchical Clustering

机译:遗传算法和层次聚类探索神经机制与心理疲劳检测的关系

获取原文

摘要

The mental fatigue affects the state of one's daily life easily, therefore, understanding the neural mechanisms of mental fatigue and better detection of it have been the focus of many researchers. Quit a few previous studies have found EEG indicators and high-precision detection methods related to mental fatigue, however, how to combine these EEG indicators with detection methods for better detection remains to be solved. To classify mental fatigue based on EEG features, our previous research, which adopted GA-SVM method, have demonstrated the optimal channels are mainly distributed in the prefrontal, occipital and temporal lobes, and the optimal channel number is 5. Here, we further explored the question by developing a new method combining genetic algorithm and hierarchical clustering to study the mental fatigue caused by visual search. Our results suggest that the optimal EEG features for assessing fatigue state vary from person to person, while the corresponding optimal channel positions are consistent. The channels with the largest changes in EEG features are mainly distributed in the frontal lobe, followed by the temporal lobe and a small area of the occipital lobe, while the corresponding regions of the almost all parietal lobe and part occipital lobe show little changes in EEG features during fatigue. Current study shows that the optimal EEG features of different individuals are different in the mental fatigue detection, and they need to be determined separately, but only a few of the same channels can be used to achieve the better detection.
机译:精神疲劳容易影响人们的日常生活,因此,了解精神疲劳的神经机制并对其进行更好的检测已成为许多研究者的重点。退出以前的一些研究发现,EEG指标和与精神疲劳有关的高精度检测方法,然而,如何将这些EEG指标与检测方法结合起来以更好地进行检测仍有待解决。为了根据脑电图特征对精神疲劳进行分类,我们以前的研究采用GA-SVM方法,证明最佳通道主要分布在额叶,枕叶和颞叶,最佳通道数为5。在这里,我们进一步探讨通过开发一种结合遗传算法和层次聚类的新方法来研究这个问题,以研究视觉搜索引起的精神疲劳。我们的结果表明,用于评估疲劳状态的最佳EEG功能因人而异,而相应的最佳通道位置是一致的。脑电特征变化最大的通道主要分布在额叶,其次是颞叶和枕叶的一小部分,而几乎所有顶叶和枕叶的相应区域的脑电图变化很小。疲劳时的特征。当前的研究表明,在精神疲劳检测中,不同个体的最佳EEG特征有所不同,需要分别确定它们,但是只有少数几个相同的通道可用于实现更好的检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号