首页> 外文会议>IEEE International Conference on Artificial Intelligence Testing >Neural Network Based Test Case Generation for Data-Flow Oriented Testing
【24h】

Neural Network Based Test Case Generation for Data-Flow Oriented Testing

机译:基于神经网络的测试用例生成,用于面向数据流的测试

获取原文

摘要

Data-flow oriented testing plays an important role in software quality assurance. Many researches applied genetic algorithm to automatically generating test cases. However, each test case needs the run of program so as to compute its fitness value in most researches, which costs a lot. This paper proposes a neural network based approach for all-uses criterion oriented test case generation. The DU-pairs that need to be tested are calculated firstly. Then BP neural network is trained to simulate the fitness function. Finally, genetic algorithm is used to generate test cases where fitness value of each test case is evaluated with the trained neural network.
机译:面向数据流的测试在软件质量保证中起着重要作用。许多研究将遗传算法应用于自动生成测试用例。但是,在大多数研究中,每个测试用例都需要运行程序才能计算其适用性值,这会花费很多。本文提出了一种基于神经网络的方法,用于面向所有准则的测试用例生成。首先计算需要测试的DU对。然后训练BP神经网络来模拟适应度函数。最后,使用遗传算法来生成测试案例,其中每个测试案例的适合度值都使用经过训练的神经网络进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号