首页> 外文会议>IEEE International Conference on Artificial Intelligence and Knowledge Engineering >A Deep Learning Model for Identifying Mountain Summits in Digital Elevation Model Data
【24h】

A Deep Learning Model for Identifying Mountain Summits in Digital Elevation Model Data

机译:用于在数字高程模型数据中识别山峰的深度学习模型

获取原文

摘要

Analyzing Digital Elevation Model (DEM) data to identify and classify landforms is an important task, which can contribute to improve the availability and quality of public open source cartography and to develop novel applications for tourism and environment monitoring. In the literature, several heuristic algorithms are documented for identifying the features of mountain regions, most notably the coordinate of summits. All these algorithms depend on parameters, which are manually set. In this paper, we explore the use of Deep Learning methods to train a model capable of identifying mountain summits, which learns from a gold standard dataset containing the coordinates of peaks in a region. The model has been trained and tested with Switzerland DEM and peak data.
机译:分析数字高程模型(DEM)数据以识别和分类地貌是一项重要任务,它可以有助于提高公共开源制图的可用性和质量,并为旅游和环境监测开发新颖的应用程序。在文献中,记录了几种启发式算法,用于识别山区的特征,尤其是山顶的坐标。所有这些算法都取决于手动设置的参数。在本文中,我们探索了深度学习方法的使用,以训练能够识别山峰的模型,该模型从包含区域内峰坐标的金标准数据集中学习。该模型已经过瑞士DEM和峰值数据的培训和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号