首页> 外文会议>IEEE International Conference on Artificial Intelligence and Knowledge Engineering >Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs
【24h】

Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs

机译:使用实时自适应小波图在工业物联网网络边缘实施可解释的预测深度学习的分布式渗透计算方法

获取原文

摘要

Challenges associated with developing analytics solutions at the edge of large scale Industrial Internet of Things (IIoT) networks close to where data is being generated in most cases involves developing analytics solutions from ground up. However, this approach increases IoT development costs and system complexities, delay time to market, and ultimately lowers competitive advantages associated with delivering next-generation IoT designs. To overcome these challenges, existing, widely available, hardware can be utilized to successfully participate in distributed edge computing for IIoT systems. In this paper, an osmotic computing approach is used to illustrate how distributed osmotic computing and existing low-cost hardware may be utilized to solve complex, compute-intensive Explainable Artificial Intelligence (XAI) deep learning problem from the edge, through the fog, to the network cloud layer of IIoT systems. At the edge layer, the C28x digital signal processor (DSP), an existing low-cost, embedded, real-time DSP that has very wide deployment and integration in several IoT industries is used as a case study for constructing real-time graph-based Coiflet wavelets that could be used for several analytic applications including deep learning pre-processing applications at the edge and fog layers of IIoT networks. Our implementation is the first known application of the fixed-point C28x DSP to construct Coiflet wavelets. Coiflet Wavelets are constructed in the form of an osmotic microservice, using embedded low-level machine language to program the C28x at the network edge. With the graph-based approach, it is shown that an entire Coiflet wavelet distribution could be generated from only one wavelet stored in the C28x based edge device, and this could lead to significant savings in memory at the edge of IoT networks. Pearson correlation coefficient is used to select an edge generated Coiflet wavelet and the selected wavelet is used at the fog layer for pre-processing and denoising IIoT data to improve data quality for fog layer based deep learning application. Parameters for implementing deep learning at the fog layer using LSTM networks have been determined in the cloud. For XAI, communication network noise is shown to have significant impact on results of predictive deep learning at IIoT network fog layer.
机译:在大多数情况下,在靠近生成数据的地方的大型工业物联网(IIoT)边缘,与开发分析解决方案相关的挑战涉及从头开始开发分析解决方案。但是,这种方法增加了物联网开发成本和系统复杂性,延迟了上市时间,并最终降低了与交付下一代物联网设计相关的竞争优势。为了克服这些挑战,可以利用现有的,广泛可用的硬件来成功参与IIoT系统的分布式边缘计算。本文采用一种渗透计算方法来说明如何利用分布式渗透计算和现有的低成本硬件来解决复杂的,计算密集型的可解释人工智能(XAI)深度学习问题,从边缘到迷雾,直至IIoT系统的网络云层。在边缘层,C28x数字信号处理器(DSP)是一个现有的低成本,嵌入式实时DSP,在多个IoT行业中具有广泛的部署和集成,被用作构建实时图形的案例研究,基于Coiflet的小波,可用于多种分析应用程序,包括IIoT网络边缘和雾层的深度学习预处理应用程序。我们的实现是定点C28x DSP构造Coiflet小波的第一个已知应用。 Coiflet小波以渗透微服务的形式构造,使用嵌入式低级机器语言在网络边缘对C28x进行编程。使用基于图的方法,表明可以仅从基于C28x的边缘设备中存储的一个小波生成整个Coiflet小波分布,这可以在IoT网络边缘节省大量内存。皮尔逊相关系数用于选择边缘生成的Coiflet小波,选择的小波在雾层用于预处理和去噪IIoT数据,以提高基于雾层的深度学习应用的数据质量。在云端已经确定了使用LSTM网络在雾层实现深度学习的参数。对于XAI,通信网络噪声显示出对IIoT网络雾层的预测深度学习结果有重大影响。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号