首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Speaker adaptation by variable reference model subspace and application to large vocabulary speech recognition
【24h】

Speaker adaptation by variable reference model subspace and application to large vocabulary speech recognition

机译:可变参考模型子空间对说话人的适应及其在大词汇语音识别中的应用

获取原文

摘要

Recently, we presented a rapid speaker adaptation technique, reference model interpolation (RMI), which is based on the linear interpolation of speaker-dependent models and the a posteriori selection of reference models. The approach uses the a priori knowledge provided by a set of representative speakers to guide the estimation of a new speaker model in the speaker space. RMI achieved rapid supervised adaptation in phoneme decoding tasks. In this paper, we present two new results of RMI: firstly, we apply the RMI technique in a practical large vocabulary continuous speech recognition (LVCSR) system with unsupervised instantaneous adaptation. Secondly, we propose an evolutional subspace scenario which integrates the slow update of reference models with RMI rapid adaptation to achieve incremental adaptation. The unsupervised adaptation experiments carried out on broadcast news transcription task show encouraging results for both instantaneous and incremental adapatation.
机译:最近,我们提出了一种快速的说话人自适应技术,即参考模型插值(RMI),它基于说话人相关模型的线性插值和参考模型的后验选择。该方法使用一组代表性发言人提供的先验知识来指导对发言人空间中新发言人模型的估计。 RMI在音素解码任务中实现了有监督的快速适应。在本文中,我们提出了RMI的两个新结果:首先,我们将RMI技术应用于具有无监督瞬时自适应功能的实用大词汇量连续语音识别(LVCSR)系统。其次,我们提出了一种进化子空间方案,该方案将参考模型的缓慢更新与RMI快速自适应集成在一起,以实现增量自适应。在广播新闻转录任务上进行的无监督适应性实验显示,瞬时和增量适应都令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号