首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >State-space analysis on time-varying correlations in parallel spike sequences
【24h】

State-space analysis on time-varying correlations in parallel spike sequences

机译:并行峰值序列中时变相关性的状态空间分析

获取原文

摘要

A state-space method for simultaneously estimating time-dependent rate and higher-order correlation underlying parallel spike sequences is proposed. Discretized parallel spike sequences are modeled by a conditionally independent multivariate Bernoulli process using a log-linear link function, which contains a state of higher-order interaction factors. A nonlinear recursive filtering formula is derived from a log-quadratic approximation to the posterior distribution of the state. Together with a fixed-interval smoothing algorithm, time-dependent log-linear parameters are estimated. The smoothed estimates are optimized via EM-algorithm such that their prior covariance matrix maximizes the expected complete data log-likelihood. In addition, we perform model selection on the hierarchical log-linear state-space models to avoid over-fitting. Application of the method to simultaneously recorded neuronal spike sequences is expected to contribute to uncover dynamic cooperative activities of neurons in relation to behavior.
机译:提出了一种状态空间方法,用于同时估计并行尖峰序列下的时间相关速率和高阶相关性。使用对数线性链接函数通过条件独立的多元伯努利过程对离散的并行峰值序列进行建模,该函数包含一个高阶交互因子状态。从状态的后验分布的对数二次逼近得出非线性递归滤波公式。与固定间隔平滑算法一起,可以估算与时间有关的对数线性参数。平滑的估计值通过EM算法进行了优化,以使其先前的协方差矩阵最大化了预期的完整数据对数似然性。另外,我们在分层对数线性状态空间模型上执行模型选择,以避免过度拟合。预期该方法在同时记录的神经元尖峰序列中的应用将有助于揭示神经元与行为相关的动态协作活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号