首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >A reduced-rank square root filtering framework for noninvasive functional imaging of volumetric cardiac electrical activity
【24h】

A reduced-rank square root filtering framework for noninvasive functional imaging of volumetric cardiac electrical activity

机译:容积心电活动的无创功能成像的降秩平方根滤波框架

获取原文

摘要

To noninvasively reconstruct transmembrane potential (TMP) dynamics throughout the 3D myocardium using body surface potential recordings, it is necessary to combine prior physiological models and patient's data with regard to their respective uncertainties. To fulfill model-data melding for this large-scale and high-dimensional system, data assimilation with proper computational reduction is needed for computational feasibility and efficiency. In this paper, we develop a reduced-rank square root TMP estimation algorithm, using dominant components of estimation uncertainties to guide a more efficient model-data coupling in the square root structure. The SVD-based reduced-rank error covariance is used to represent and track the dominant estimation errors, and unified into an integrated square root filtering framework. Phantom experiments demonstrate the ability of this framework to bring substantial computational reduction at slight expense of degraded estimation accuracy. It therefore improves the efficiency and applicability of the volumetric myocardial TMP imaging in practice.
机译:为了使用体表电势记录在整个3D心肌中无创地重建跨膜电势(TMP)动力学,有必要将先前的生理学模型和患者数据的不确定性结合起来。为了实现针对该大规模和高维系统的模型数据融合,需要使用适当的计算约简进行数据同化以提高计算的可行性和效率。在本文中,我们开发了降阶平方根TMP估计算法,它使用估计不确定性的主要成分来指导平方根结构中更有效的模型-数据耦合。基于SVD的降秩误差协方差用于表示和跟踪主要估计误差,并统一到一个集成的平方根滤波框架中。幻影实验证明了此框架能够以略微降低估计精度的代价带来实质性的计算缩减。因此,它在实践中提高了体积心肌TMP成像的效率和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号