首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Spectrum separation of Magnetic Resonance Spectroscopy based on sparse representation
【24h】

Spectrum separation of Magnetic Resonance Spectroscopy based on sparse representation

机译:基于稀疏表示的磁共振波谱分离

获取原文

摘要

In this paper, a novel spectrum separation technique based on sparse representation is proposed to deal with Magnetic Resonance Spectroscopy (MRS) quantification which is used to measure the levels of different metabolites in brain tissues. Since a measured MR spectrum contains the spectra of numbers of metabolites and a baseline, the separation and quantification of them becomes difficult. A nonnegative pursuit algorithm based on regularized FOCUSS algorithm is proposed here to decompose a measured spectrum with respect to an overcomplete dictionary. Benefitting from the a priori knowledge, the dictionary is built by Lorentzian and Gaussian basis functions representing different metabolites and baseline. Using this algorithm, not only the baseline is separated from the spectra of interest, but also the spectra of different metabolites are separated. The accuracy of quantification and the robustness are improved, from simulation data, compared with a commonly used estimation method. The quantification on tumor metabolism with in vivo brain MR spectra is also demonstrated.
机译:本文提出了一种基于稀疏表示的新型光谱分离技术,用于处理磁共振波谱(MRS)量化,用于测量脑组织中不同代谢物的水平。由于测量的MR光谱包含代谢物数量的光谱和基线,因此很难分离和量化它们。在此,提出了一种基于正则化FOCUSS算法的非负追踪算法,用于针对超完备字典分解测量频谱。得益于先验知识,该词典由代表不同代谢物和基线的洛伦兹和高斯基函数建立。使用该算法,不仅可以将基线从目标光谱中分离出来,而且可以将不同代谢物的光谱分离出来。与常用的估计方法相比,从仿真数据可以提高量化的准确性和鲁棒性。还证明了体内脑部MR光谱对肿瘤代谢的定量作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号