首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Word confidence calibration using a maximum entropy model with constraints on confidence and word distributions
【24h】

Word confidence calibration using a maximum entropy model with constraints on confidence and word distributions

机译:使用最大熵模型对词置信度和词分布进行约束的最大熵模型

获取原文

摘要

It is widely known that the quality of confidence measure is critical for speech applications. In this paper, we present our recent work on improving word confidence scores by calibrating them using a small set of calibration data when only the recognized word sequence and associated raw confidence scores are made available. The core of our technique is the maximum entropy model with distribution constraints which naturally and effectively make use of the word distribution, the raw confidence-score distribution, and the context information. We demonstrate the effectiveness of our approach by showing that it can achieve relative 38% mean square error (MSE), 39% negative normalized likelihood (NNLL), and 23% equal error rate (EER) reduction on a voice mail transcription data set and relative 35% MSE, 45% NNLL, and 35% EER reduction on a command and control data set.
机译:众所周知,置信度度量对于语音应用至关重要。在本文中,我们介绍了最近的工作,即当只有识别的单词序列和相关的原始置信度得分可用时,通过使用少量校准数据对其进行校准来改善单词置信度得分。我们技术的核心是具有分布约束的最大熵模型,该模型自然有效地利用了单词分布,原始置信度得分分布和上下文信息。我们通过显示语音邮件转录数据集可以实现38%的均方误差(MSE),39%的负归一化可能性(NNLL)和23%的均等错误率(EER)降低,证明了我们方法的有效性。在命令和控制数据集上,MSE相对降低35%,NNLL降低45%,EER降低35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号