首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Joint pollution detection and attacker identification in peer-to-peer live streaming
【24h】

Joint pollution detection and attacker identification in peer-to-peer live streaming

机译:对等实时流中的联合污染检测和攻击者识别

获取原文

摘要

In the emerging peer-to-peer (P2P) live streaming, users cooperate with each other to support efficient delivery of video over networks. Pollution attack is an effective attack against P2P live streaming, where attackers upload useless data to their peers, which may cause distrust among users. To resist pollution attacks and stimulate user cooperation in P2P live streaming, this paper proposes a joint pollution detection and attacker identification system, where polluted chunks are detected as early as possible and trust management is used to identify polluters. We analyze its performance and propose different schemes to address the tradeoff between pollution resistance and system overhead. Our simulation results show that the proposed system can effectively resist pollution attacks while minimizing the user's computation overhead.
机译:在新兴的点对点(P2P)实时流传输中,用户彼此合作以支持通过网络高效地交付视频。污染攻击是对P2P实时流的有效攻击,攻击者在攻击中将无用的数据上传到对等端,这可能导致用户之间的不信任。为了抵御污染攻击并促进P2P实时流中的用户合作,本文提出了一种联合污染检测和攻击者识别系统,该系统可以尽早检测到污染块,并使用信任管理来识别污染者。我们分析了其性能,并提出了不同的方案来解决在抗污染性和系统开销之间的权衡。我们的仿真结果表明,所提出的系统可以有效抵抗污染攻击,同时最大程度地减少用户的计算开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号