首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Active Disturbance Rejection Based Iterative Learning Control for Variable Air Volume Central Air-Conditioning System
【24h】

Active Disturbance Rejection Based Iterative Learning Control for Variable Air Volume Central Air-Conditioning System

机译:基于主动扰动抑制的可变风量中央空调系统迭代学习控制

获取原文

摘要

The Variable Air Volume (VAV) Central Air-Conditioning system is a complicated system with non-linearity, large-time delay and strong inertia, thus it is difficult to design an effective controller. Iterative Learning Control (ILC) takes good effect in controlled process with repeatability and periodicity, but it cannot cope with uncertain disturbance explicitly. A creative algorithm, Active Disturbance Rejection based Iterative Learning Control (ADR-Based ILC), is proposed to improve ILC's performance in VAV control system. ADR-Based ILC compensates the disturbance explicitly caused by ambient temperature, heat from people and machines, and makes it higher control precision and higher energy-efficiency. An accurate model of VAV system is built in TRNSYS platform, and ADR-Based ILC is proved to be more effective than fuzzy PID and ILC.
机译:变风量中央空调系统是一个非线性,延时大,惯性强的复杂系统,很难设计出有效的控制器。迭代学习控制(ILC)在受控过程中具有可重复性和周期性,效果很好,但是不能明确地应对不确定的干扰。为了提高ILC在VAV控制系统中的性能,提出了一种基于主动干扰抑制的迭代学习控制(ADR-based ILC)算法。基于ADR的ILC可以明显补偿由环境温度,人和机器产生的热量引起的干扰,并使其具有更高的控制精度和更高的能源效率。在TRNSYS平台上建立了VAV系统的精确模型,并证明了基于ADR的ILC比模糊PID和ILC更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号