首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Based on Improved Semi-Supervise Clustering Method Training Classifier for Analog Circuit Fault Classification
【24h】

Based on Improved Semi-Supervise Clustering Method Training Classifier for Analog Circuit Fault Classification

机译:基于改进的半监督聚类方法训练分类器的模拟电路故障分类

获取原文

摘要

In recent years, semi-supervised clustering as an important research subject has significance in dealing with lack of training sample sets. However, formerly semi-supervised clustering usually cannot attend satisfactory consequence in precision and training time at the same time. Aimed to the problem of clustering method assist training classifier to label the samples, produce the time optimization algorithm. Based on prior knowledge, mining the acquired unlabeled sample sets deeply of their potential data structure and combine semi-supervised fuzzy C-means(SS-FCM) arithmetic with similarity coefficient to sort out the samples for training time improvement. On the basis of little influence on classification result accuracy, gain the fuzzy similarity matrix from Euclidean distance and assess the maximum dependable sample point with its neighborhood for their similarity degree, will avoid searching the maximum dependable sample point one by one and optimize holistic clustering time costing from reduce the iterations of classifier to some extent. Through artificial circuit simulation experiment, using improvement SS-FCM assist SVM classifier and single SVM and SS-FCM assist SVM classifier to make a comparison, verify the algorithm from classify precision and arithmetic speed and the result of experiment can prove the validity of the improvement.
机译:近年来,半监督聚类作为重要的研究课题,对于解决训练样本集的不足具有重要意义。但是,以前的半监督聚类通常无法同时在准确性和训练时间上达到令人满意的效果。针对聚类方法辅助训练分类器对样本进行标注,产生时间优化算法的问题。基于先验知识,对获取的未标记样本集进行挖掘,挖掘其潜在数据结构的深度,然后将半监督模糊C均值(SS-FCM)算法与相似系数相结合,对样本进行分类,以提高训练时间。在对分类结果准确性影响不大的基础上,从欧式距离获得模糊相似度矩阵,并对其附近相似度进行最大可靠样本点评估,避免一一搜索最大可靠样本点,优化整体聚类时间。减少分类器迭代的成本。通过仿真实验,利用改进的SS-FCM辅助SVM分类器和单SVM与SS-FCM辅助SVM分类器进行比较,从分类精度和算术速度上验证算法,实验结果可以证明改进的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号