首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >A KNN-SVR Data Mending Method for Insufficient Data of Magnetic Flux Leakage Detection
【24h】

A KNN-SVR Data Mending Method for Insufficient Data of Magnetic Flux Leakage Detection

机译:一种用于漏磁检测数据不足的KNN-SVR数据修补方法

获取原文

摘要

In magnetic flux leakage (MFL) detection, transient fault appears unavoidably on individual sensor when we collect magnetic flux leakage signals, which makes MFL data insufficient. Data mending for insufficient data concerns the accuracy of the defects inversion. A precise data mending method based on K Nearest Neighbor-Support Vector Regression (KNN-SVR) is introduced, which effectively reduces the training cost of SVR and greatly improves the accuracy of the algorithm. The method is tested by experiment data obtained. The results demonstrate that the proposed method can improve the accuracy rate of data mending of insufficient data with an acceptable time cost.
机译:在磁通量泄漏(MFL)检测中,当我们收集磁通量泄漏信号时,单个传感器不可避免地会出现瞬态故障,这会使MFL数据不足。补足不足数据的数据涉及缺陷反转的准确性。提出了一种基于K最近邻支持向量回归(KNN-SVR)的精确数据修补方法,有效降低了SVR的训练成本,大大提高了算法的准确性。通过获得的实验数据测试该方法。结果表明,所提出的方法可以以可接受的时间成本提高不足数据的数据修补的准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号