首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Fault Diagnosis Method Based on Kernel Fuzzy C-Means Clustering with Gravitational Search Algorithm
【24h】

Fault Diagnosis Method Based on Kernel Fuzzy C-Means Clustering with Gravitational Search Algorithm

机译:引力搜索算法的核模糊C-均值聚类故障诊断方法

获取原文

摘要

The main drawback of the traditional fuzzy C-means clustering algorithm (FCM) is the randomness of the initial clustering center, which usually leads to the local optimal solutions and have a great influence on the clustering results. It also has to mention the FCM cannot deal with the non-linear data effectively. In this paper, gravitational search algorithm (GSA) is proposed to solve the randomness of the clustering centers. In addition, kernel fuzzy c-means clustering (KFCM) is introduced, which can improve the clustering result of the fuzzy c-means clustering for non-linear data. Finally, the proposed improved algorithm are verified with the three-tank system, and the results show that the concurrent faults can be diagnosed effectively.
机译:传统的模糊C均值聚类算法(FCM)的主要缺点是初始聚类中心的随机性,通常会导致局部最优解,并且对聚类结果有很大影响。还必须提到的是,FCM无法有效处理非线性数据。为了解决聚类中心的随机性问题,提出了重力搜索算法(GSA)。另外,引入了核模糊c均值聚类(KFCM),可以改善非线性数据模糊c均值聚类的聚类结果。最后,通过三缸系统对提出的改进算法进行了验证,结果表明可以有效地诊断并发故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号