首页> 外文会议>IEEE Conference on Visual Analytics Science and Technology >FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning
【24h】

FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning

机译:FAIRVIS:用于在机器学习中发现交叉偏见的可视化分析

获取原文

摘要

The growing capability and accessibility of machine learning has led to its application to many real-world domains and data about people. Despite the benefits algorithmic systems may bring, models can reflect, inject, or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain demographic subgroups. Discovering which biases a machine learning model has introduced is a great challenge, due to the numerous definitions of fairness and the large number of potentially impacted subgroups. We present FAIRVIS, a mixed-initiative visual analytics system that integrates a novel subgroup discovery technique for users to audit the fairness of machine learning models. Through FAIRVIS, users can apply domain knowledge to generate and investigate known subgroups, and explore suggested and similar subgroups. FAIRVIS's coordinated views enable users to explore a high-level overview of subgroup performance and subsequently drill down into detailed investigation of specific subgroups. We show how FAIRVIS helps to discover biases in two real datasets used in predicting income and recidivism. As a visual analytics system devoted to discovering bias in machine learning, FAIRVIS demonstrates how interactive visualization may help data scientists and the general public understand and create more equitable algorithmic systems.
机译:机器学习的能力和可访问性的增长导致其在许多现实领域和有关人的数据中的应用。尽管算法系统可能带来好处,但是模型仍可以在其输出中反映,注入或加剧隐性和显性社会偏见,从而不利于某些人口统计子组。由于对公平性的定义众多,并且可能影响的子群体数量众多,因此发现引入机器学习模型的偏见是一个巨大的挑战。我们展示了FAIRVIS,这是一种混合式视觉分析系统,它集成了一种新颖的子组发现技术,供用户审核机器学习模型的公平性。通过FAIRVIS,用户可以应用领域知识来生成和调查已知的子组,并探索建议的子组和类似的子组。 FAIRVIS的协调视图使用户能够探索子组性能的高层次概述,并随后深入研究特定子组的详细调查。我们将展示FAIRVIS如何帮助发现用于预测收入和累犯的两个真实数据集中的偏差。作为致力于发现机器学习偏差的视觉分析系统,FAIRVIS展示了交互式可视化如何帮助数据科学家和公众理解并创建更公平的算法系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号