首页> 外文会议>IEEE Conference on Computer Communications >FS-Net: A Flow Sequence Network For Encrypted Traffic Classification
【24h】

FS-Net: A Flow Sequence Network For Encrypted Traffic Classification

机译:FS-Net:用于加密流量分类的流序列网络

获取原文

摘要

With more attention paid to user privacy and communication security, the volume of encrypted traffic rises sharply, which brings a huge challenge to traditional rule-based traffic classification methods. Combining machine learning algorithms and manual-design features has become the mainstream methods to solve this problem. However, these features depend on professional experience heavily, which needs lots of human effort. And these methods divide the encrypted traffic classification problem into piece-wise sub-problems, which could not guarantee the optimal solution. In this paper, we apply the recurrent neural network to the encrypted traffic classification problem and propose the Flow Sequence Network (FS-Net). The FS-Net is an end-to-end classification model that learns representative features from the raw flows, and then classifies them in a unified framework. Moreover, we adopt a multi-layer encoder-decoder structure which can mine the potential sequential characteristics of flows deeply, and import the reconstruction mechanism which can enhance the effectiveness of features. Our comprehensive experiments on the real-world dataset covering 18 applications indicate that FS-Net achieves an excellent performance (99.14% TPR, 0.05% FPR and 0.9906 FTF) and outperforms the state-of-the-art methods.
机译:随着对用户隐私和通信安全的更多关注,加密流量的数量急剧增加,这给传统的基于规则的流量分类方法带来了巨大挑战。结合机器学习算法和手动设计功能已成为解决此问题的主流方法。但是,这些功能在很大程度上取决于专业经验,这需要大量的人工。并且这些方法将加密的流量分类问题分为分段的子问题,这不能保证最优的解决方案。在本文中,我们将递归神经网络应用于加密的流量分类问题,并提出了流序列网络(FS-Net)。 FS-Net是一种端到端分类模型,该模型从原始流中学习代表特征,然后在统一框架中对它们进行分类。此外,我们采用了多层编码器-解码器结构,可以深入挖掘流的潜在顺序特征,并导入可以增强特征有效性的重构机制。我们在涵盖18个应用程序的真实数据集上进行的全面实验表明,FS-Net具有出色的性能(99.14%的TPR,0.05%的FPR和0.9906 FTF),并且优于最新的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号