首页> 外文会议>IEEE Conference on Computer Communications >Dedas: Online Task Dispatching and Scheduling with Bandwidth Constraint in Edge Computing
【24h】

Dedas: Online Task Dispatching and Scheduling with Bandwidth Constraint in Edge Computing

机译:Dedas:边缘计算中具有带宽约束的在线任务调度和调度

获取原文

摘要

In this paper, we study online deadline-aware task dispatching and scheduling in edge computing. We jointly consider management of the networking bandwidth and computing resources to meet the maximum number of deadlines. We propose an online algorithm Dedas, which greedily schedules newly arriving tasks and considers whether to replace some existing tasks in order to make the new deadlines satisfied. We derive a non-trivial competitive ratio theoretically, and our analysis is asymptotically tight. We then build DeEdge, an edge computing testbed installed with typical latency-sensitive applications such as IoT sensor monitoring and face matching. Besides, we adopt a real-world data trace from the Google cluster for large-scale emulations. Extensive testbed experiments and simulations demonstrate that the deadline miss ratio of Dedas is stable for online tasks, which is reduced by up to 60% compared with state-of-the-art methods. Moreover, Dedas performs well in minimizing the average task completion time.
机译:在本文中,我们研究了边缘计算中的在线感知截止期限的任务调度。我们共同考虑对网络带宽和计算资源进行管理,以达到最大期限。我们提出一种在线算法Dedas,该算法贪婪地调度新到达的任务,并考虑是否要替换一些现有任务以使新的截止日期得到满足。从理论上我们得出了一个非平凡的竞争比率,并且我们的分析在渐近性上是严格的。然后,我们构建DeEdge,这是一个边缘计算测试平台,安装了典型的对延迟敏感的应用程序,例如IoT传感器监控和面部匹配。此外,我们采用来自Google集群的真实数据跟踪进行大规模仿真。大量的测试实验和模拟表明,Dedas的最后期限错失率对于在线任务是稳定的,与最新方法相比,该比率降低了多达60%。此外,Dedas在最小化平均任务完成时间方面表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号