首页> 外文会议>IEEE Conference on Computer Communications >Statistical Enrichment Models for Activity Inference from Imprecise Location Data
【24h】

Statistical Enrichment Models for Activity Inference from Imprecise Location Data

机译:从不精确位置数据推断活动的统计丰富模型

获取原文

摘要

Inference on location data has generated a great amount of interest and there are two data sources. GPS location data from GPS-based endpoint devices have high precision, but suffer from intermittent availability, small coverage of users and extra demand on devices' battery. Telecom mobility data, on the other hand, have the complementary advantages of continuous availability and complete coverage but generally with coarse location accuracy. The focus of this paper is on the development of a location insight system for activity labeling and user segment inference, based only on Telecom mobility data enriched with point-of-interest (POI) data. Specifically, we estimate activity patterns based on Bayesian techniques while infer user segments via a tree-based classification algorithm. We test the performance of our inference system via simulated mobility data and investigate the impact of important factors such as granularity of data. We conclude that imprecise location data, enriched with other source of information, can be used for the development of new generation activity inference models.
机译:对位置数据的推断引起了极大的兴趣,并且有两个数据源。来自基于GPS的端点设备的GPS位置数据具有较高的精度,但会受到间歇性可用性,用户覆盖范围小以及对设备电池的额外需求的困扰。另一方面,电信移动性数据具有连续可用性和完整覆盖范围的互补优势,但通常具有粗略的定位精度。本文的重点是仅基于丰富了兴趣点(POI)数据的电信移动性数据,开发用于活动标记和用户细分推断的位置洞察系统。具体来说,我们根据贝叶斯技术估算活动模式,同时通过基于树的分类算法推断用户细分。我们通过模拟的移动性数据测试推理系统的性能,并研究重要因素(例如数据粒度)的影响。我们得出的结论是,不精确的位置数据以及其他信息源可用于开发新一代活动推理模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号