首页> 外文会议>IEEE Canadian Conference of Electrical and Computer Engineering >Distributed Optimal Power Flow for Electric Power Systems with High Penetration of Distributed Energy Resources
【24h】

Distributed Optimal Power Flow for Electric Power Systems with High Penetration of Distributed Energy Resources

机译:具有高分布能源渗透率的电力系统的分布式最优潮流

获取原文

摘要

Optimization technology is developing to the point of becoming a cost-effective enabler of increased power transfer asset utilization. This paper presents a smart decomposition technique for the traditional optimal power flow (OPF) algorithm to allow distributed optimal power flow (DOPF) calculations without relying on a centralized controller. Hence, it develops a feasible distributed architectures for the electric power industry. The proposed method is implemented using Monte Carlo Tree Search based reinforcement learning (MCTS-RL) algorithm. This reduces computational complexity and allows to avoid difficulties associated with stochastic modeling often used to capture the random nature of distributed energy resources (DER) units and loads. The efficiency of the optimization process is improved when the DOPF reflects the fast response capability of the optimal solution. This contribution provides results for a real-time dispatchable resource and demonstrates the flexibility of RL to adapt to changes of system states, ultimately reducing the generation cost while maintaining the system security constraints.
机译:优化技术正在发展成为提高电力传输资产利用率的经济有效的推动力。本文提出了一种用于传统最佳潮流(OPF)算法的智能分解技术,可在不依赖中央控制器的情况下进行分布式最优潮流(DOPF)计算。因此,它为电力行业开发了可行的分布式架构。提出的方法是使用基于蒙特卡罗树搜索的强化学习(MCTS-RL)算法实现的。这降低了计算复杂性,并可以避免与随机建模相关的困难,该随机建模通常用于捕获分布式能源(DER)单元和负载的随机性。当DOPF反映了最佳解决方案的快速响应能力时,优化过程的效率就会提高。此贡献为实时可调度资源提供了结果,并展示了RL适应系统状态变化的灵活性,最终降低了生成成本,同时保持了系统安全性约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号